

UE 2

Biophysique

résumé de cours

Pr I. Peretti

service de Biophysique et médecine nucléaire hôpital Lariboisière université Paris-Diderot

L2

UE 2 Biopathologie tissulaire et méthodes d'étude

Biophysique Anatomie pathologique histologie

I. PerettiC. DanelJ. Hugon

Pr I. Peretti

service de Biophysique et médecine nucléaire hôpital Lariboisière université Paris-Diderot

Biophysique

- 1) Optique et vision
- 2) Imagerie médicale
- 3) Effets biologiques, radiobiologie, radioprotection

Cours magistraux

Examen: QR + QCM

Biophysique

DATE		COURS	ENSEIGNANT
Jeudi 29 septembre	13 h 30	1) Optique et vision	Peretti I.
Mardi 4 octobre	13 h 30	2) Optique et vision	Peretti I.
Mardi 11 octobre	13 h 30	3) Imagerie analogique et imagerie numérique	Peretti I.
Jeudi 13 octobre	13 h 30	4) Imagerie par Résonance Magnétique	Peretti I.
Mardi 18 octobre	13 h 30	5) Imagerie par Rayons X	Sarda L.
Jeudi 20 octobre	13 h 30	6) Explorations Ultrasonores	Rouzet F.
Mardi 25 octobre	13 h 30	7) Médecine Nucléaire	Rouzet F.
Jeudi 27 octobre	13 h 30	8) Choix des examens, applications pratiques	Dion E.
Jeudi 27 octobre		9) Imagerie Multimodalités	Peretti I.
Jeudi 3 novembre	13 h 30	10) Imagerie Hybride	Paycha F.
Vendredi 4 novembre	10 h 30	11) Radiobiologie Radioprotection	Lebtahi R.

BIBLIOGRAPHIE

UE3, P. PERETTI, I. IDY-PERETTI, P. CHAUMET-RIFFAUD Bases physiques des méthodes d'exploration. Editeur : De Boeck (2010)

UE3, P. PERETTI, I. IDY-PERETTI, P. CHAUMET-RIFFAUD Aspects fonctionnels. Editeur : De Boeck (2011)

UE3, P. PERETTI, I. IDY-PERETTI, P. CHAUMET-RIFFAUD QCM de physique et biophysique. Editeur : De Boeck (2012)

UE3, P. PERETTI

Fiches de Révision et QCM de physique et biophysique. Editeur : De Boeck (2013)

Physique pour les sciences de la vie. A.BOUYSSY, M.DAVIER et B.GATTY Editeur : Dunod Université.

Biophysique A. AURENGO, T. PETITCLERC, F. GREMY, Editeur :Flammarion, Médecine-Sciences (2006)

1^{ère} partie

OPTIQUE ET VISION

résumé de cours

Généralités

Optique - vision

```
stimulus physique de la vision :
   ondes lumineuses
récepteur : œil
       rétine
       cônes (vision diurne)
                                   couleurs
       bâtonnets (vision nocturne)
       influx nerveux
       réaction photochimique
       pigments photosensibles
       nerf optique
 dioptrique oculaire
        formation des images
```

défauts : amétropies corrections : lentilles ou chirurgie

I - La lumière visible

Ondes électromagnétiques et lumière

ondes électromagnétiques :

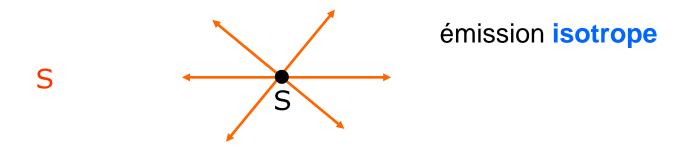
vitesse dans le vide $c = 3.10^8$ m/s

fréquence de l'onde
$$N$$
 longueur d'onde λ

$$\lambda = \frac{\mathbf{c}}{\mathbf{N}}$$

dans le vide

Lumière visible


couleurs

violet	380 à 455 nm	
bleu	455 à 492 nm	limites variables
vert	492 à 577 nm	
jaune	577 à 597 nm	
orange	597 à 622 nm	
rouge	622 à 780 nm	

Propagation de la lumière

- si le milieu de propagation M est homogène :

La lumière issue de S se propage suivant des portions de droites orientées appelées rayons lumineux.

orientation des rayons = sens de propagation de la lumière

- vitesse de la lumière
 - \Box dans le vide $v = c = 3.10^8 \text{ m/s}$
 - □ dans un milieu (gaz, liquide, solide)

$$v = \frac{c}{n}$$

n = indice absolu de réfractionn > 1 milieu matériel

exemples:

air
$$n = 1,00029 (n \sim 1)$$

eau $n \sim 4/3 = 1,33$
verre $n \sim 3/2 = 1,5$

II - L'interaction

lumière – photorécepteurs

rétiniens

Interaction lumière-photorécepteurs rétiniens (cônes et bâtonnets) :

lumière visible : photons de longueur d' onde λ comprise entre 380 et 780 nm

- □ réaction photochimique entre les photons et les substances chromophores contenues dans le segment externe des cônes et des bâtonnets :
 - transduction de l'énergie électromagnétique des photons en énergie électrique
 - puis série de réactions donnant naissance à un potentiel d'action

❖ La réaction photo-chimique initiale dans le cas des bâtonnets :

La substance chromophore : le pourpre rétinien ou <u>rhodopsine</u> : coloration pourpre orangé de la rétine périphérique

- partie protéique : l'opsine
- liée à un aldéhyde : le rétinal
- aldéhyde dont l'alcool primaire correspondant est le rétinol =
 vitamine A
- faible illumination:

réaction rapidement réversible à l'obscurité

→ absence de persistance gênante de l'image

- illumination plus importante:

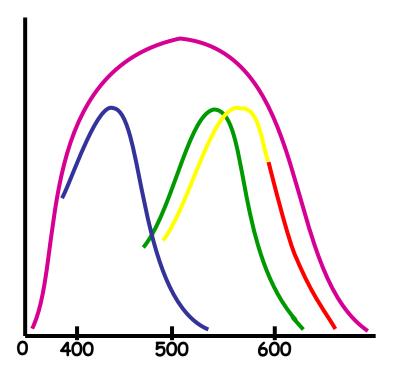
```
jaune visuel — opsine + rétinol (« blanc visuel »)
```

reformation du pourpre rétinien à partir du blanc visuel par une réaction assez lente (cycle long)

remarques

1) Adaptation à l'obscurité après une illumination

En présence d'une rétine complètement adaptée à l'obscurité :


- Cas de l'exposition de la rétine à un éclair bref
 - → récupération rapide
- Cas d'une exposition prolongée de la rétine à la lumière
 - → récupération lente

2) héméralopie

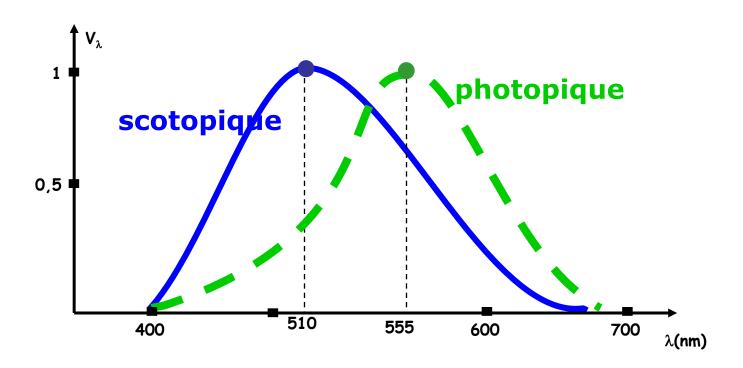
- = cécité nocturne
- En général : guérison rapide et complète par recharge en vitamine A
- Dans certains cas : guérison lente et incomplète

- **❖** La réaction photo-chimique dans les cas des cônes :
- responde de 3 types de cônes et de 3 pigments chromophores différents :
 - cônes sensibles au bleu (cônes S) : cyanolabe
 - cônes sensibles au vert (cônes M) : chlorolabe
 - cônes sensibles au rouge (cônes L) : érythrolabe
- mêmes réactions photo-chimiques avec la lumière que pour la rhodopsine
- permettent la vision chromatique : synthèse trichrome

spectre d'absorption des 3 types de pigments :

- cônes sensibles au bleu (max : 440 nm)
- cônes sensibles au vert (max : 535 nm)

• cônes "sensibles" au rouge (max : 575 nm dans le jaune, dont l'absorption se poursuit dans le rouge)


courbe d'efficacité lumineuse photopique

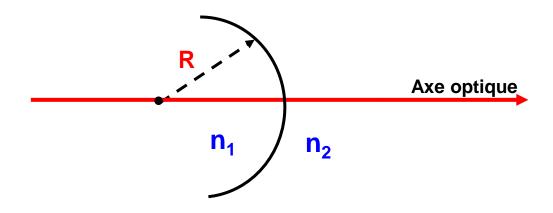
L'élaboration de la sensation visuelle :

mécanismes de transmission et de codage des potentiels d'action jusqu'aux structures cérébrales d'intégration et d'élaboration de la sensation visuelle

Sensibilité de l'œil à la lumière

effet Purkinje : courbes d'efficacité lumineuse

III – Les images optiques


Les dioptres et les systèmes optiques

Principe du retour inverse de la lumière

Pour aller d'un point B à un point A dans un milieu d'indice n variable, la lumière suit le trajet inverse de celui qu'elle décrirait pour aller de A en B

dioptre : interface de séparation entre 2 milieux

exemple : dioptre sphérique :

 \mathbf{R} = rayon de courbure

axe de symétrie : axe optique

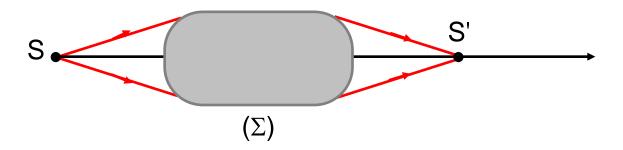
• système optique : ensemble de dioptres

système optique centré : même axe optique

Images optiques et stigmatisme

S = objet ponctuel (lumineux ou éclairé)

 (Σ) = système optique centré juxtaposition de dioptres, lentilles et/ou miroirs avec axe de symétrie commun (= axe optique)


S' = image observée grâce à un récepteur (œil, plaque photographique, etc.)

Stigmatisme rigoureux

Définition

(Σ) est rigoureusement stigmatique pour le couple (S,S') si tout rayon issu de S ponctuel et traversant (Σ) passe par S' $(\rightarrow S')$ ponctuelle)

S et S' = points conjugués

en général, condition non réalisée

S' = tache lumineuse non ponctuelle

Stigmatisme approché

Récepteur : composé de cellules sensibles ayant une extension spatiale

- œil : cônes et bâtonnets
- plaque photographique : grains

Définition

 (Σ) réalise le stigmatisme approché pour le couple (S,S') si tout rayon issu de S ponctuel et traversant (Σ) arrive sur une seule cellule sensible du récepteur

Réalisation du stigmatisme approché : approximation de Gauss

Conditions de l'approximation de Gauss

- objet situé dans un plan ⊥ l'axe optique
- points objets sur l'axe optique ou voisins de l'axe optique
- rayons lumineux issus de l'objet faiblement inclinés sur l'axe optique

Objets et images, réels et virtuels

pour les systèmes optiques réfringents (dioptres, lentilles)

sens de propagation de la lumière

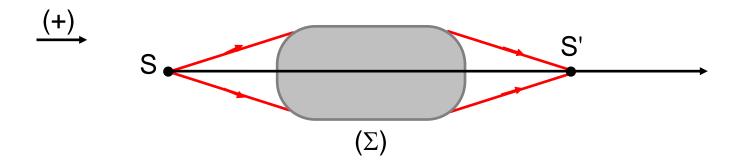
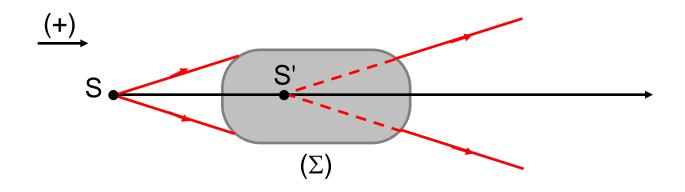

objet réel

image virtuelle

image réelle

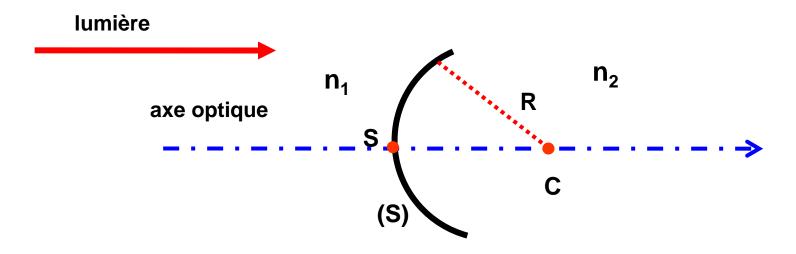
øøjet


• S objet réel – S' image réelle

rayons lumineux émergents convergent en S' énergie lumineuse en S'

→ S' image réelle

• S objet réel - S' image virtuelle


rayons lumineux émergents divergent semblent provenir de S' Pas d'énergie lumineuse en S'

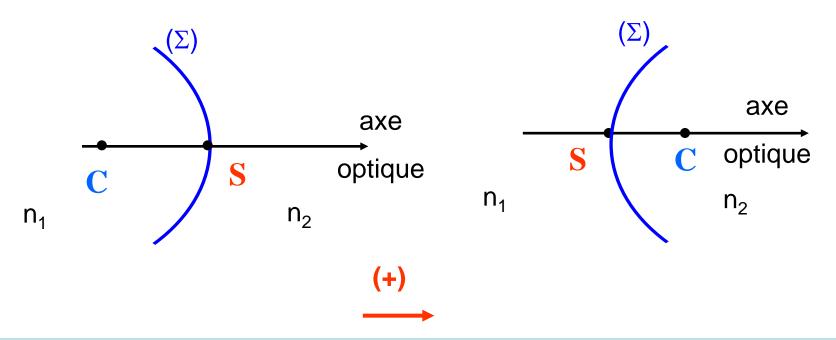
→ S' image virtuelle

IV - Le dioptre sphérique

Dioptre de forme sphérique

C: centre de courbure du dioptre

S: sommet du dioptre

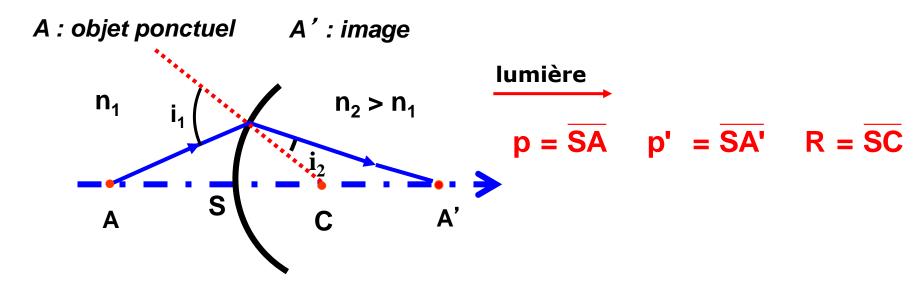

R = rayon de courbure du dioptre sphérique

axe optique = axe des abscisses origine de l'axe des abscisses : point S

convention de signe : sens positif de l'axe des abscisses = sens de propagation de la lumière

conditions de Gauss supposées réalisées

$$R = \overline{SC}$$



orientation de l'axe des abscisses : sens de propagation de la lumière

R < 0 dioptre concave

 $R>0 \label{eq:R}$ dioptre convexe

la relation fondamentale de conjugaison des dioptres

orientation de l'axe des abscisses : sens de propagation de la lumière

$$\frac{n_2}{p'} - \frac{n_1}{p} = \frac{n_2 - n_1}{R}$$

relation de conjugaison des dioptres

conditions d'application :

S = origine des abscisses = sommet du dioptre

attention : notations algébriques

puissance (ou convergence) C d'un dioptre

Puissance (ou convergence ou vergence) C

définition générale

$$C = \frac{n_2 - n_1}{R}$$

définitions annexes

dioptre convergent : C > 0 dioptre divergent : C < 0

unité SI : $m^{-1} = dioptrie$ (notée souvent δ ou dt)

Proximité d'un point

· définition : inverse de l'abscisse du point

$$P = \frac{1}{p}$$

 nouvelle écriture relation de conjugaison des dioptres

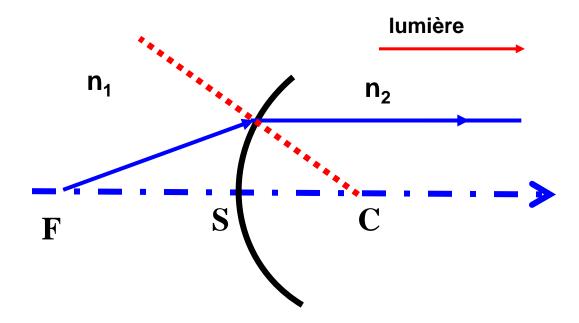
$$n_2 P' - n_1 P = C$$

Foyers et distances focales du dioptre sphérique

1 - Foyer principal image F'

rayons lumineux *incidents*: parallèles axe optique émergents passent en un point de l'axe optique noté F' (foyer principal image)

F': image d'un point A à l'infini situé sur l'axe optique


relation entre distance focale image f' et puissance C du dioptre

$$f' = \frac{n_2}{C}$$

2 - Foyer principal objet F du dioptre sphérique

rayons incidents passant F sur axe principal

→ rayons lumineux émergents : // axe optique

si objet A au point $F \rightarrow image A' à l'infini$

position de F: f = distance focale objet

$$\overline{\mathbf{SF}} = \mathbf{f}$$

$\overline{SF} = f$

distance focale objet

F et F ' toujours de part et d'autre du dioptre

Application

A partir de la relation de conjugaison, déterminer la relation entre la distance focale objet f et la puissance C d'un dioptre sphérique

objet en F, image à l'infini \Rightarrow p = f et p'infini relation de conjugaison :

$$\frac{n_2}{p'} - \frac{n_1}{p} = C \qquad \qquad \rightarrow \qquad 0 - \frac{n_1}{f} = C$$

$$f = \overline{SF} = -\frac{n_1}{C}$$

remarques:

on a vu que :
$$f = -\frac{n_1}{C}$$

$$C = \frac{n_2 - n_1}{R}$$
 avec $R = \overline{SC}$

- dioptre convergent $C > 0 \rightarrow f < 0$
 - point focal objet F réel et en avant du dioptre

- dioptre divergent C < 0 → f > 0
 - point focal objet F virtuel et en arrière du dioptre